短 報

大脳基底核標本の 21.1 テスラ MRI とその病理対応: レヴィ小体型認知症

藤岡 伸助¹⁾ Melissa E Murray²⁾ Parastou Foroutan³⁾⁴⁾ Katherine J Schweitzer¹⁾⁵⁾ Dennis W Dickson²⁾ Samuel C Grant³⁾⁴⁾ Zbigniew K. Wszolek^{1)*}

要旨:脳実質には鉄、フェリチン、マンガン、および銅などの常磁性物質が存在する.われわれはレヴィ小体型 認知症 (DLB)1例と正常対照1例の固定脳標本大脳基底核における常磁性物質の沈着を、21.1 テスラ MRI をもち いて評価し、さらに同じ検体に Prussian blue 染色をおこない Fe³⁺の沈着を病理学的に評価した. DLB 患者の大脳 基底核における信号雑音比と緩和時間は、対照例と比較して全領域で低かった. 同検体の Prussian blue 染色性は DLB 症例において対照例よりも高く、組織への Fe³⁺沈着と T₂* 値の低下の間に相関がえられた. この高磁場 MRI の技術が、神経変性プロセスにかかわる Fe³⁺の役割の解明に役立つことが期待される.

(臨床神経 2011;51:603-607)

Key words:レヴィ小体型認知症, 高磁場MRI, 21.1テスラ, 大脳基底核, Prussian blue染色

はじめに

レヴィ小体型認知症 (dementia with Lewy bodies: DLB) は、神経変性性認知症の中でアルツハイマー病についで2番 目に多い疾患であり、全認知症の 20% を占める¹⁾. DLB は変 動する認知機能,パーキンソン症候群,鮮明な幻視,抗精神病 薬への過敏性などを呈し、その病理所見は、α-シヌクレイン および ubiquitin 陽性のレヴィ小体とレヴィ神経突起が, 新皮 質,皮質下,および脳幹にみられることを特徴とする¹⁾.その 原因は α-シヌクレインの機能異常に求められているが, 正確 なメカニズムはまだ解明されていない. DLB は認知症と運動 症状の出現する時期において、認知症をともなうパーキンソ ン病(Parkinson's disease dementia: PDD)とは区別される が、両者ともに新皮質にレヴィ小体を高頻度にみとめるなど 病理学的にことなる点は少ない. DLB を PDD と, または進行 性核上性麻痺やアルツハイマー病などのレヴィ小体をともな わない疾患と鑑別するために様々な臨床検査が試みられてき たが³⁾, 確定診断はいまだ病理所見によらざるをえない.

この報告では、21.1 テスラ (900MHz) という、100µm より もさらに精細な評価をおこなうことが可能であり、臨床用 MRI 以上の画像コントラストを生み出すことができる超高 磁場 MRI³⁴⁰で検索した DLB 症例脳標本の大脳基底核を呈示 する.われわれは, DLB 症例と正常対照症例間の MRI の信号 雑音比 (signal-to-noise ratio:SNR) と緩和時間の相違を定量 的に評価し,また Prussian blue 染色をもちいて,その相違に おける Fe³⁺沈着の役割を検討した.

対象と方法

対象:病理的に診断された DLB 患者と,神経変性疾患の 既往がない正常対照患者の大脳基底核を対象検体として採取 した. DLB 症例は 87 歳で死亡した男性で,81 歳時には軽度 の認知機能障害と筋強剛や運動緩慢などのパーキンソニズム を呈しており,後者に対する抗パーキンソン薬への反応性は 乏しかった.また不眠症,幻視,嗅覚障害をみとめた.病状は 徐々に進行し,病終期には高度の認知機能障害と運動機能障 害を呈した. 剖検時の脳重は 1,240g で,肉眼的には前頭葉の 軽度萎縮,および黒質と青斑核における色素減弱をみとめた. 組織学的には脳幹から大脳皮質にかけてびまん性にレヴィ小 体をみとめ.また老人斑を散在性にみとめた.病理学的に,軽 度のアルツハイマー型老年性変化をともなった diffuse neocortical type の DLB と診断した.対照症例は,子宮頸部の扁 平上皮癌再発に対する手術中および手術後の腹腔内出血によ

*Corresponding author: Department of Neurology, Mayo Clinic Jacksonville [4500 San Pablo Road, Cannaday Bldg 2-E, Jacksonville, FL, 32224]

¹⁾Department of Neurology, Mayo Clinic

²⁾Department of Pathology and Neuroscience, Mayo Clinic

³⁾National High Magnetic Field Laboratory, Florida State University

⁴Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University

⁵Center of Neurology, Department of Neurodegeneration and Hertie Institute of Clinical Brain Research, University of Tübingen (受付日:2011年1月24日)

Fig. 1 MRI and pathological findings of a DLB and a neurologically normal control case. T_2 weighted images (MSME sequence acquired at 21.1 T: TR = 2.5 s; TE = 7.9ms; resolution = $100 \times 100 \times 550 \ \mu$ m) of the basal ganglia (BG) of a control case (A) and a DLB case (D). T_2 * weighted images (MGE sequence acquired at 21.1 T: TR = 750 ms; TE = 3.5 ms; resolution = $100 \times 100 \times 550 \ \mu$ m) of the basal ganglia (BG) of a control case (B) and a DLB case (E). Compared to the control case, there are diffuse and patchy lower signal intensity regions in the BG of the DLB case, which is more remarkable in the T_2 * weighted images. Corresponding Prussian blue staining of globus pallidus internal (GPi) of the control case (C) and DLB case (E) (magnification $\times 10$). There are several blue areas indicating the existence of iron diffusely in the GPi of the DLB case while there are less of these blue regions present in the BG of the control case.

り 65 歳で死亡した女性で,神経変性疾患の既往はなかった. 脳重は 1,200g で,肉眼的,組織学的に有意な異常所見はみら れなかった.

方法:淡蒼球内節 (globus pallidus internal:GPi), 淡蒼球 外節 (globus pallidus external:GPe) および被殻 (putamen; P)をふくむ大脳基底核を剖検脳から採取して使用した.検体 はリン酸緩衝食塩水 (phosphate-buffered saline:PBS) で固 定後,専用のプラスティックカセットにいれ 4℃ で保管した. MRI 施行直前に検体を PBS で洗浄し、また室温でフロリ ネートに 45 分間漬けることにより標本の表面や亀裂部位に 付着した気泡を除去した.Bruker Avance III spectrometer (Bruker Biospin, Billerica, MA) と RRI microimaging gradients (Resonance Research, Inc., Billerica, MA) をもちいて,

この検体に MRI T₂および T₂*強調撮像をおこなった. T₂ weighted multi-slice multi-echo sequences (MSME) はくりか えし時間 (Repetition Time: TR) が 2.5s, エコー時間 (Echo time: TE) が 7.9~94.8ms の範囲で, $100 \times 100 \times 500 \mu m$ の解 像度をえた. このスピンエコー変法は, この TE の範囲で 12 個のエコーを生み出すために、180度ラジオ波パルス(Radiofrequency pulse; RF)と、7.9ms という最小限の内部エコー間 隔を利用した. T₂* weighted multiple gradient echo (MGE) は、TR=0.75s, TE が 3.5~45.5ms の範囲で画像をえた. MGE は、60度の excitation flip angle をもちいることにより、変動 する gradient pulse と前述した TE 範囲で7msの内部エ コー間隔により作り出された. また T₂および T₂*緩和時間 は、各構造に手動で描いた関心領域(range of interest : ROI) と、常磁性物質マッピングのための pixel-by-pixel の解析をも ちいて、一つの指数回帰モデルにより調整した. T₂および T₂*強調画像の信号強度は、病理組織とコントロールの組織 間での SNR を比較するためにもちいた緩和時間測定のため の ROI と同じ ROI をもちい,背景の noise に応じて定量化し た.

MRI 検査後の検体をパラフィンで固定, 5µm 厚でスライス し, Fe³⁺の検出を目的とする Prussian blue 染色をおこなっ た⁹⁾. ScanScope (Aperio, Vista, CA) にてスライドの画像を コンピューターに取り込み, MRI と同様に ROI を設定し, そ

Region	Signal-to-Noise Ratios		Relaxation times	
	MSME	MGE	T_2	$T_2 *$
Р	- 30.20%	- 33.70%	- 33.50%	- 66.50%
GPe	- 30.20%	- 30.50%	- 36.40%	- 62.20%
GPi	- 25.80%	- 37.90%	- 35.00%	- 58.10%

Table 1A Quantitative MRI Comparing DLB to Control.

The relative magnetic resonance signal-to-noise ratios and relaxation times for T_2 and T_2* weighted datasets between DLB and control samples.

P: putamen, GPe: globus pallidus external, GPi: globus pallidus internal, MSME: multi-slice multi-echo, MGE: multiple gradient echo.

の範囲内の染色性を Aperio Image Scope で定量した. この研 究は、メイヨクリニックの IRB(Institutional review board) 委員会から承認をえた.

結 果

21.1 テスラ超高磁場 MRIの T₂および T₂*強調画像に よって,固定した脳標本の大脳基底核のそれぞれの領域 (GPi, GPe, P)は明確に識別され,淡蒼球と被殻を連絡する 線維 (pencil fiber tracts)を確認できる高解像度の画像をえる ことができた (Fig.1A, B, D, E). 正常対照症例 (Fig.1 A, B)と比較して,DLB 症例の大脳基底核にはびまん性の散 在性低信号斑がみとめられ(Fig.1D, E),その所見は T₂*強 調画像において顕著であった.この T₂および T₂*強調画像 で検出された SNR と緩和時間を DLB 症例と正常対照例で 比較した (Table 1A).DLB 症例の SNR と緩和時間は、コン トロール症例と比較して基底核内の全領域で低く、緩和時間 は T₂*強調画像でより短い傾向がみられた.

Fig. 1C, Fは, それぞれ DLB 症例とコントロール症例 GPi の Prussian blue 染色による病理所見である. DLB 症例では Fe^{3+} の存在を示す青色の染色部位をびまん性にみとめた. AIS による評価では, 大脳基底核内のすべての領域において, Prussian blue 染色陽性部位の割合は DLB が正常対照よりも 高かったが, もっとも陽性率が高い領域は GPi であった. GPi より程度は低いものの, GPe, P においても Fe^{3+} の含量は増加 していた (Table 1B).

考 察

今回のパイロット研究で、われわれは正常対照例と DLB 症例の大脳基底核を、まったく同じ条件と方法の下で 21.1 テスラ MRI によって分析した.それぞれの組織は、プロトン 化されていないフッ素化炭素の溶液に浸すことで、RF コイ ルの負荷と B0 field の不均一さを軽減した⁵⁾.また両サンプル ともに、同じ RF コイルとマグネットシステム、およびパルス シーケンスをもちいて分析した.これらの条件下では、T₂ および T₂*強調画像における信号強度と、さらに重要となる SNR を正確に定量することができる⁶⁾.

Table 1B Prussian blue in DLB.

Region	DLB	Control	DLB/Control
Р	1.42	0.29	390%
GPe	3.43	0.41	737%
GPi	4.87	0.47	936%

Histological data of Prussian Blue (PB) staining. Percentage of positive area for PB staining in each lesion in a DLB case and a control case and the relative histological datasets between the two cases.

DLB: dementia with Lewy bodies, P: putamen, GPe: globus pallidus external, GPi: globus pallidus internal, MSME: multi-slice multi-echo, MGE: multiple gradient echo.

DLB 症例の大脳基底核は正常対照例と比較して、T₂および T₂*強調画像で信号強度および SNR の低下をみとめた. 同標 本の Prussian blue 染色では、DLB 症例において Fe³⁺の沈着 が示された. 組織への鉄の沈着は、フェリチンにより生じる局 所の磁気勾配を通じた水分子の拡散を介して信号減衰をひき おこす7).鉄は正常脳実質において、とくに淡蒼球、赤核、黒 質, 被殻, および尾状核に高濃度に存在し, 基底核への鉄沈着 は一般的に年齢とともに増加する⁸⁾. 生理的な量の鉄は, tyrosine hydroxylase のような神経伝達物質合成酵素の補助因子 として働き,脳の発達とその機能の維持のために必須であ る⁹⁾¹⁰⁾.一方,過剰な鉄,とくに不安定鉄は酸化ストレスを増 幅するため¹¹⁾,パーキンソン病をふくむ神経変性疾患の発症 に関与する可能性が高いと考えられている¹²⁾. 組織中の鉄は 遊離鉄だけではなく、フェリチン、ヘモシデリン、βアミロイ ドプラーク, α-シヌクレインなどにふくまれる形で存在す る?).

1986年以来, 脳実質内に蓄積する鉄検出のために多くの MRI 研究がおこなわれてきた¹³⁾.しかし, DLB における鉄の 変化についての報告は非常に少ない.DLB は,レヴィ小体病 理に関連するいくつかの特徴をパーキンソン病と共有してお り,酸化ストレスにおいてもパーキンソン病と同様の研究結 果がえられている¹⁴⁾.したがって,鉄の蓄積や代謝に関して も,DLB とパーキンソン病は類似点を持っている可能性があ る.われわれは、今回の MRI における DLB 症例と正常対照 例間の信号強度の相違は,DLB における大脳基底核内の Fe³⁺ の集積を反映している可能性があると考えている.同標本の Prussian blue 染色による鉄の陽性率は DLB 症例において正 常対照例よりも高く,この見解を支持している.

しかし大脳基底核を GPi, GPe, および P の領域ごとに比較 すると、定量化した SNR および T₂緩和に関しては領域差を みとめないのに対して、Prussian blue の染色性は GPi でもっ とも高く、両者の間に良好な相関はえられなかった.これは、 組織内における鉄の存在形態、あるいはフェリチン、マンガ ン、銅など、鉄以外の常磁性の物質が信号強度と緩和時間に影 響している可能性も考えられる^{15/16)}.また、Prussian blue 染色 が、組織中のすべての鉄を検出できるほど十分な感度を持た ない可能性も否定できない.しかし、基底核の3領域におい て、T₂*緩和と組織学的に確認された Fe³⁺の沈着の間には強い線形相関 (R²=0.98)がえられた.このことから,DLB 症例の大脳基底核においては、Fe³⁺の負荷が,非常に高い磁場と、磁場を貫く感受性ベースの超常磁性を形成する主な要因と考えられる.しかしながら、現時点では、フェリチン、ヘモシデリン、 β アミロイドプラーク、 α -シヌクレインなどの、特定の物質内に存在する Fe³⁺が生み出すコントラストや緩和の変化に関する情報がなく、組織をもちいたより大きなコホート研究が必要と考えられる.

われわれは, 観察された MRI の変化の本質を理解し, さら に疾患の持つ特有性を立証するために, DLB をふくめた神経 変性疾患に対してこの放射線学的病理学的解析を進めている ところである.

文 献

- McKeith IG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47:1113-1124.
- Small GW, Bookheimer SY, Thompson PM, et al. Current and future uses of neuroimaging for cognitively impaired patients. The Lancet Neurology 2008;7:161-172.
- Schepkin VD, Brey WW, Gor'kov PL, et al. Initial in vivo rodent sodium and proton MR imaging at 21.1 T. Magnetic Resonance Imaging 2010;28:400-407.
- Schweitzer KJ, Foroutan P, Dickson DW, et al. A novel approach to dementia: High Resolution 1H MRI of the Human Hippocampus Performed at 21.1 T. Neurology 2010; 74:1654.
- Ma Y, Hof PR, Grant SC, et al. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 2005;135: 1203-1215.

- Tyszka JM, Fraser SE, Jacobs RE. Magnetic resonance microscopy: recent advances and applications. Current Opinion in Biotechnology 2005;16:93-99.
- Schuff N. Potential role of high-field MRI for studies in Parkinson's disease. Movement Disorders 2009;24 Suppl 2:S684-690.
- Aquino D, Bizzi A, Grisoli M, et al. Age-related iron deposition in the basal ganglia: Quantitative analysis in healthy subjects. Radiology 2009;252:165-172.
- 9) Zecca L, Gallorini M, Schunemann V, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry 2001;76:1766-1773.
- Oka K, Kato T, Takita T, et al. Inhibition of tyrosine hydroxylase, a Fe (II)-stimulated monooxygenase, by bleomycin. The Journal of Antibiotics 1980;33:1043-1047.
- Wypijewska A, Galazka-Friedman J, Bauminger ER, et al. Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism & Related Disorders 2010; 16:329-333.
- Gutteridge JM. Iron and oxygen radicals in brain. Annals of Neurology 1992;32 Suppl:S16-21.
- Drayer B, Burger P, Darwin R, et al. MRI of brain iron. American Journal of Roentgenology 1986;147:103-110.
- 14) Castellani RJ, Perry G, Siedlak SL, et al. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neuroscience Letters 2002;319:25-28.
- Schenck JF. Magnetic resonance imaging of brain iron. Journal of the Neurological Sciences 2003;207:99-102.
- Jomova K, Vondrakova D, Valko M. Metals, Oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry 2010;345:91-104.

Abstract

Magnetic resonance imaging with 21.1 T and pathological correlations-diffuse Lewy body disease

Shinsuke Fujioka, M.D.¹⁾, Melissa E Murray, Ph.D.²⁾, Parastou Foroutan, M.S.³⁾⁴⁾, Katherine J Schweitzer, M.D.¹⁾⁵⁾,

Dennis W Dickson, M.D.², Samuel C Grant, Ph.D.³⁾⁴⁾ and Zbigniew K. Wszolek, M.D.¹⁾

¹⁾Department of Neurology, Mayo Clinic

²⁾Department of Pathology and Neuroscience, Mayo Clinic

³⁾National High Magnetic Field Laboratory, Florida State University

⁴⁾Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University

⁵Center of Neurology, Department of Neurodegeneration and Hertie Institute of Clinical Brain Research,

University of Tübingen

We investigated fixed basal ganglia specimens, including globus pallidus and putamen, with 21.1-Tesla MRI allowing us to achieve a microscopic level resolution from a patient with pathologically confirmed dementia with Lewy bodies (DLB) and a neurologically normal control case. We acquired T_2 and T_2 * weighted images that demonstrated diffuse and patchy lower intensities in the basal ganglia compared to control. There are several paramagnetic substances in brain tissue that could potentially reduce both T_2 and T_2 * relaxation times, including ferritin, iron (Fe³⁺), manganese, copper and others. Because iron is most abundant, low intensities on T_2 and T_2 * weighted images most likely reflect iron deposition. Iron, especially Fe³⁺, deposition was visible in the pathological specimens stained with Prussian blue after images were obtained. Although radiological-pathological comparisons are not straightforward with respect to either the MRI signal or relaxation quantification, there appears to be a correlation between the relative increase in iron as assessed by Prussian blue staining and the decrease in T_2 * value between the DLB and control specimens. As such, this exceptionally high field MRI technique may provide details about the role that iron deposition plays either directly or indirectly as a biomarker in neurodegenerative processes.

(Clin Neurol 2011;51:603-607)

Key words: Lewy body disease, high-field MRI, 21.1T, basal ganglia, Prussian blue